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Abstract 

A concise literature review is done on the industrial and laboratory scale investigations of 
sludge formation in the Hall Héroult Process. Formation of sludge and consequently its 
transformation into resistive cathodic deposits has been one of the focal concerns of the 
aluminum producers. However, nowadays due to the profusion of production, especially by 
China, all the major producers of aluminum have increased their efforts towards sludge 
minimization and better understanding of the phenomena that lead to formation of such 
deposits. In this review article, first the sludge formation phenomenon and its detrimental effect 
in Hall-Héroult process is introduced. Later, the thermochemistry of the sludge is presented. 
Furthermore, four of the most important factors in sludge formation namely hydrodynamics, 
operational temperature (i.e. superheat level), alumina feeding and bath chemistry are reviewed. 

Keywords: Hall Héroult process, hydrodynamics, sludge formation, alumina feeding strategy, 
bath chemistry and operational temperature. 

1. Introduction

Aluminum is a strategic metal in transportation, packaging, construction, electrical industry, 
consumer durables and machinery [1]. Furthermore, recent developments in the production of 
aluminum batteries has created yet another potential market for the consumption of aluminum in 
the future [2]. According to the world’s annual production of aluminum and its trend in recent 
years, China has become a formidable producer of aluminum in the last 6 years [3] and this has 
forced other producers of aluminum to try to reduce their production cost more and more by 
investing in research and development (R&D). 

In an ideal aluminum electrolysis process, according to Faraday’s law, 0.335573 kg of 
aluminum is produced with 1 kAh of electrical charge. However, in reality, a current efficiency 
of ≈ 95 – 96 % is observed [4]. Two major phenomena account for such a loss of current 
efficiency. The first reason is the back reaction of solubilized aluminum ions with CO2 gas and 
production of CO gas and dissolved Al2O3. The second major phenomenon is the formation of 
resistive deposits on the surface of the cathode. Such deposits not only create more resistivity 
against the electrical current and increase the required electrical energy, but also as it is 
mentioned in the following paragraphs (Section 2.), contributes to the four significant factors 
reducing the current efficiency. 

2. Sludge Formation and Its Drawbacks

In an ideal scenario, upon the introduction of alumina onto the cryolitic bath surface, alumina 
particles easily dissolve and disperse evenly at interelectrode space (i.e. distance between anode 
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and upper surface of metal pad). Unfortunately, just like most of engineering cases, such ideal 
situation is hardly possible and when undissolved clumps of alumina sink to the bottom of the 
cell, beneath the metal pad, a dense and viscous phase called sludge is formed. According to 
Tabereaux and Peterson [4], the following steps are followed upon addition of 1 – 2 kg of 
alumina particles onto the surface of bath by point feeders. At first, the particles get wetted by 
the bath. Later the alumina particles absorb the sensible heat and their temperature increases 
from 100 C to 960 C. At this stage, the wetted undissolved particles form agglomerates and 
subsequent dissolution occurs around the alumina particles creating a supersaturated local bath. 
Gradually most of the alumina particles dissolve into the bath and distribute in the cell by the 
turbulence flow. Sludge is a paste-like viscous combination of alumina particles and alumina-
saturated bath. The average properties of a typical sludge sample is as follows: density of 
 2 400 kg/m3, alumina content of 20 - 50 %, AlF3 of 2 - 10 %, CaF2of 2 - 5 % [5, 6: p. 77]. 
 
Formation of sludge is not a favorable phenomenon due to the fact that, it contributes to the four 
significant factors reducing the current efficiency, namely operational temperature, bath 
chemistry, current density and the stability of the metal-bath interface. A typical sludge phase 
with the aforementioned characteristics has an electrical resistivity of 0.01 Ωm [7, 8], which is 
about twice the resistivity of bath and about 35 000 times greater than molten aluminum. Such 
electrical resistivity diverts the local current density and creates areas with higher current 
density and consequently higher cathode wear [9]. The sludge formation also consequently 
influences the carbide content, carbon particles dispersion, bath superheat and loss of current 
efficiency. Extensive sludge formation increases the occurrence of anode effect, during which 
the anode is poorly wetted by the electrolyte resulting in extensive carbon dusting. Presence of 
dispersed carbon particles in the bath not only increases the electrical resistivity of the bath (i.e. 
higher energy consumption) [10], but also by reaction with dissolved aluminum and formation 
of aluminum carbide, causes higher solubility of aluminum and loss of current efficiency [11, 
12].  
 
Besides, the sludge also tampers with the hydrodynamics of the cell. The higher electrical 
resistivity of the sludge-covered cathode area diverts the local current to flow horizontally 
towards the edges of the sludge. Such horizontal current flows perturb the dominant vertical 
current flows leading to additional instability of the metal-bath interface. The oscillation of 
metal-bath interface has a dramatic effect on the optimum operation of the cell considering the 
large aspect ratio of the cell and higher resistivity of the bath compared to metal pad [13]. 
Moreover, the shear amount of metal-bath interfacial stress leads to higher aluminum solubility 
(i.e. fogging effect), which consecutively accounts for higher back reaction and loss of current 
efficiency [14: p. 216-226]. In addition, such metal/bath instabilities results in an increase of 
anode-cathode distance (ACD), cathode voltage drop (CVD) and disturb heat balance which 
dramatically affect the current efficiency and energy consumption [15].         
 
3. Thermochemistry of Sludge Phase 
 
Thermodynamics of the metallurgical systems is of great importance since it can guide the 
scientists to not only find the optimum pressure, temperature and compositions but also it 
provides an in depth study of the interactions that happen between the cell’s fluids, linings, 
cathode materials and impurities. The review of such systems is way out of the scope of this 
concise review article but avid readers are referred to references such as Thonstad et al. [14] and 
Sorlie and Øye [16]. To our best of knowledge, the most exhaustive and specific 
thermodynamic study of the sludge in the aluminum electrolysis cells has been done partially by  
Liu [17] and more comprehensively by Allard et al. [5]. 
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chemistry, current density and stability of the metal-bath interface. This concise review article 
tries to provide a reminder on the existing problem of sludge formation (also known as muck) 
and hopes to motivate young scientists and engineers to pull the aluminum industry out of 
sludge! 
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